4.1 CONCRETE TECHNOLOGY

RATIONALE

Diploma holders in Civil Engineering are supposed to supervise concreting operations involving proportioning, mixing, transporting, placing, compacting, finishing and curing of concrete. To perform above functions, it is essential to impart knowledge and skills regarding ingredients of concrete and their properties; properties of concrete in plastic and hardened stage, water cement ratio and workability; proportioning for ordinary concrete; concreting operations and joints in concrete.

LEARNING OUTCOME

After going through the subject, the students will be able to:

- Evaluate physical properties of cement concrete as per IS codes
- Conduct various tests on aggregate in laboratory to evaluate their characteristics
- Interpret the grading charts of different aggregates and evaluate fineness modulus of aggregates
- Evaluate workability and strength of concrete
- Recognise bleeding, segregation, harshness defects in fresh concrete
- Explain hydration process of cement, water to cement (w/s) ratio and analyze relationship between compressive strength and w/c ratio
- Conduct various destructive and non-destructive (NDT) test
- Design mix of concrete as per IS code
- Describe the use of different admixture to enhance the properties of concrete
- Explain the feature of special concretes
- Demonstrate how to carry out various concreting operation

DETAILED CONTENTS

THEORY

1. Introduction: Definition of concrete, uses of concrete in comparison to other building materials. (02 hrs)

2. Ingredients of Concrete: (06 hrs)

 2.1 Cement: physical properties of cement; different types of cement as per IS Codes

 2.2 Aggregates:

 2.2.1 Classification of aggregates according to size and shape
2.2.2 Characteristics of aggregates: Particle size and shape, surface texture, specific gravity of aggregate; bulk density, water absorption, surface moisture, bulking of sand, deleterious materials soundness

2.2.3 Grading of aggregates: coarse aggregate, fine aggregate; All-in-aggregate; fineness modulus; interpretation of grading charts

2.3 Water: Quality requirements as per IS:456-2000

3. Water Cement Ratio: (02 hrs)

3.1 Hydration of cement principle of water-cement ratio, Duff Abram’s Water-cement ratio law: Limitations of water-cement ratio law and its effects on strength of concrete

4. Properties of Concrete: (8 hrs)

4.1 Properties in plastic state: Workability, Segregation, Bleeding and Harshness

4.1.1 Factors affecting workability, Measurement of workability: slump test, compacting factor and Vee Bee consistometer; Recommended slumps for placement in various conditions as per IS:456-2000/SP-23

4.2 Properties in hardened state: Strength, Durability, Impermeability, Dimensional changes;

5. Concrete Mix Design (08 hrs)

5.1 Objectives of mix design, introduction to various grades as per IS:456-2000; proportioning for nominal mix design as prescribed by IS 456-2000

5.2 Adjustment on site for: Bulking of fine aggregate, water absorption of aggregate, workability

5.3 Difference between nominal and controlled concrete

5.4. Introduction to IS-10262-2009-Code for controlled mix design.

6. Introduction to Admixtures (chemicals and minerals) for improving performance of concrete (03 hrs)

7. Special Concretes (only features) (06 hrs)
7.1 Concreting under special conditions, difficulties and precautions before, during and after concreting
 7.1.1 Cold weather concreting
 7.1.2 Under water concreting
 7.1.3 Hot weather concreting

7.2 Ready mix concrete

7.3 Fibre reinforced concrete

7.4 Polymer Concrete

7.5 Fly ash concrete

7.6 Silica fume concrete

8. Concreting Operations: (12 hrs)

**8.1 Storing of Cement:
 8.1.1 Storing of cement in a warehouse
 8.1.2 Storing of cement at site
 8.1.3 Effect of storage on strength of cement
 8.1.4 Determination of warehouse capacity for storage of Cement

**8.2 Storing of Aggregate: Storing of aggregate at site

8.3 Batching (to be shown during site visit)
 8.3.1 Batching of Cement
 8.3.2 Batching of aggregate by:
 8.3.2.1 Volume, using gauge box (farma) selection of proper gauge box
 8.3.2.2 Weight spring balances and batching machines
 8.3.3 Measurement of water

**8.4 Mixing:
 8.4.1 Hand mixing
 8.4.2 Machine mixing - types of mixers, capacities of mixers, choosing appropriate size of mixers, operation of mixers
 8.4.3 Maintenance and care of mixers

**8.5 Transportation of concrete: Transportation of concrete using: wheel barrows, transit mixers, chutes, belt conveyors, pumps, tower crane and hoists etc.
8.6 Placement of concrete:

Checking of form work, shuttering and precautions to be taken during placement

** 8.7 Compaction:

8.7.1 Hand compaction

8.7.2 Machine compaction - types of vibrators, internal screed vibrators and form vibrators

8.7.3 Selection of suitable vibrators for different situations

8.8 Finishing concrete slabs - screeding, floating and trowelling

8.9 Curing:

8.9.1 Objective of curing, methods of curing like ponding, membrane curing, steam curing, chemical curing

8.9.2 Duration for curing and removal of form work

8.10 Jointing: Location of construction joints, treatment of construction joints, expansion joints in buildings - their importance and location

8.11 Defects in concrete: Identification of defects and methods of removing defects

9. Importance and methods of non-destructive tests (introduction only) (1 hr)

NOTE: ** A field visit may be planned to explain and show the relevant things

PRACTICAL EXERCISES:

1. To determine the physical properties of cement such as fineness, consistency, setting time, soundness and compressive strength of cement as per IS Codes
2. To determine silt content in fine aggregate
3. Determination of specific gravity and water absorption of aggregates
4. Determination of bulk density and voids of aggregates
5. Determination of particle size distribution of fine, coarse and all-in-aggregate by sieve analysis (grading of aggregate)
6. To determine workability by slump test and to verify the effect of water, fine aggregate/coarse aggregate ratio and aggregate/Cement ratio on slump
7. Compaction factor test for workability
8. Non destructive test on concrete by:
 a) Rebound Hammer Test
 b) Ultrasonic Pulse Velocity Test
9. To determine compressive strength of concrete cubes for different grades of concrete
10. To determine flexural strength of concrete beam

INSTRUCTIONAL STRATEGY

This subject is of practical nature. While imparting instructions, teachers are expected to organize demonstrations and field visits to show various stages of concreting operations. While working in the laboratory, efforts should be made to provide extensive practical training to students so as to make them confident in the preparation and testing of concrete. Teachers should also organize viva examination so as to develop understanding about concepts and principles involved. The experiments may also be demonstrated to students through video programmes developed in the field of ‘concrete technology’ by NITTTR, Chandigarh.

RECOMMENDED BOOKS

2. Krishnamurthy, KT; Rao, A Kasundra and Khandekar, AA; "Concrete Technology"; Dhanpat Rai and Sons, Delhi
3. Gupta BL and Gupta Amit; "Text Book of Concrete Technology"; Standard Publishers Distributors, Delhi
5. Neville, AM; "Properties of Concrete", Pitman (ELBS Edition available), London
6. Orchard; "Concrete Technology"; Vol I, II, and III
7. Handoo, BL; Puri, LD and Mahajan Sanjay "Concrete Technology"; Satya Prakashan, New Delhi
9. Vazirani, VN; and Chandola, SP; "Concrete Technology"; Khanna Publishers, Delhi
10. Gambhir, ML; "Concrete Technology"; MacMillan India Ltd., New Delhi

12. Birinder Singh, “Concrete Technology”, Kaption Publications, Ludhiana,

13. Module on ‘Special Concretes by Dr Hemant Sood, NITTTR Chandigarh

14. Concrete Technology by P Dayaratman

15. Video programme on different experiments in ‘Concrete Technology’ developed by NITTTR, Chandigarh.

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>
4.2 WATER SUPPLY AND WASTE WATER ENGINEERING

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

RATIONALE

One of the basic necessities of life is water which is not easily available to a lot of people. Providing potable water at the first place then collection and disposal of waste solids and liquids are important activities of civil engineering field. This subject provides basic knowledge and skills in the field of water supply system and waste disposal system. Classroom instructions should be supplemented by field visits to show functional details of water supply and waste disposal systems. It will also be advantageous to invite professionals from field to deliver extension lectures on specialized operations.

LEARNING OUTCOME

After undergoing the subject, students will be able to:

- Calculate the water requirement for a particular population
- Check and improve the quality of water by giving required treatment to water
- Calculate the size of different pipes to carry water
- Lay the network of pipes for water supply as well as sewerage in a building
- Draw the location of different appurtenances
- Carry out the disposal of sewage
- Supervise the water supply and waste water schemes

DETAILED CONTENTS

THEORY

A. WATER SUPPLY

1. Introduction (02 hrs)
 1.1 Necessity and brief description of water supply system.
 1.2 Sources of water – surface/sub-surface sources

2. Quantity of Water (06 hrs)
 2.1 Water requirement
 2.2 Rate of demand and variation in rate of demand
 2.3 Per capita consumption for domestic, industrial, public and fire fighting uses as per BIS standards (no numerical problems)
 2.4 Population Forecasting
3. Quality of Water
3.1 Meaning of pure water and methods of analysis of water
3.2 Physical, Chemical and bacteriological tests and their significance
3.3 Standard of potable water as per Indian Standard
3.4 Maintenance of purity of water

4. Water Treatment (brief introduction)
**4.1 Sedimentation - purpose, types of sedimentation tanks
**4.2 Coagulation/floculation - usual coagulation and their feeding
**4.3 Filtration - significance, types of filters, their suitability
4.4 Necessity of disinfection of water, forms of chlorination, break point chlorine, residual chlorine, application of chlorine.
4.5 Flow diagram of different treatment units, functions of (i) Areation fountain (ii) mixer (iii) floculator, (iv) classifier, (v) slow and rapid sand filters (vi) chlorination chamber.

5. Conveyance of Water
**5.1 Different types of pipes - cast iron, PVC, steel, asbestos cement, concrete and lead pipes. Their suitability and uses, types of joints in different types of pipes.
5.2 Appurtenances: Sluice, air, reflux valves, relief valves, scour valves, bib cocks, stop cocks, fire hydrants, water meters their working and uses
5.3 Distribution system: Requirement of distribution, minimum head and rate, methods of layout of distribution pipes
5.3.1 Systems of water supply - Intermittent and continuous service reservoirs - types, necessity and accessories.
5.3.2 Wastage of water - preventive measures
5.3.3 Maintenance of distribution system
5.3.4 Leakage detection

6. Laying of Pipes
6.1 Setting out alignment of pipes
6.2 Excavation for laying of pipes and precautions to be taken
6.3 Handling, lowering and jointing of pipes
6.4 Testing of pipe lines
6.5 Back filling
6.6 Use of boring rods

7. Building Water Supply
**7.2 Water supply fittings (with sketches) and terminology related to plumbing
B. WASTE WATER ENGINEERING

8. Introduction (04 hrs)
 8.1 Purpose of sanitation
 8.2 Necessity of systematic collection and disposal of waste
 8.3 Definition of terms in sanitary engineering
 8.4 Collection and conveyance of sewage
 8.5 Conservancy and water carriage systems, their advantages and Disadvantages
 8.6 (a) Surface drains (only sketches): various types, suitability
 (b) Types of sewage: Domestic, industrial, storm water and its seasonal variation

9. Sewerage System (05 hrs)
 9.1 Types of sewerage systems, materials for sewers, their sizes and joints
 9.2 Appurtenance: Location, function and construction features. Manholes, drop manholes, tank hole, catch basin, inverted siphon, flushing tanks grease and oil traps, storm regulators, ventilating shafts

10. Laying and Construction of Sewers: (06 hrs)
 10.1 Setting out/alignment of sewers
 10.2 Excavations, checking the gradient with boning rods preparation of bedding, handling and jointing testing and back filling of sewers/pipes.
 10.3 Construction of surface drains and different sections required

11. Sewage Characteristics: (04 hrs)
 11.1 Properties of sewage and IS standards for analysis of sewage
 11.2 Physical, chemical and bacteriological parameters

12. Natural Methods of Sewerage Disposal (05 hrs)
 12.1 General composition of sewage and disposal methods
 12.2 Disposal by dilution
 12.3 Self purification of stream
 12.4 Disposal by land treatment
 12.5 Nuisance due to disposal

13. Sewage Treatment (09 hrs)
 13.1 Meaning and principle of primary and secondary treatment and activated sludge process their flow diagrams
 13.2 Introduction and uses of screens, grit chambers, detritus tanks, skimming tanks, plainsedimentation tanks, primary clarifiers, secondary clarifiers, filters, control beds, intermittent sand filters, trickling filters, sludge treatment and disposal, oxidation ponds (Visit to a sewage treatment plant)
14. Building Drainage (09 hrs)

14.1 Aims of building drainage and its requirements
14.2 Different sanitary fittings and installations
14.3 Traps

** A field visit may be planned to explain and show the relevant things.

LIST OF PRACTICALS

1) To determine turbidity of water sample
2) To determine dissolved oxygen of given sample
3) To determine pH value of water
4) To perform jar test for coagulation
5) To determine BOD of given sample
6) To determine residual chlorine in water
7) To determine conductivity of water and total dissolved solids
8) To study the installation of following:
 a) Water meter
 b) Connection of water supply of building with main
 c) Pipe valves and bends
 d) Water supply and sanitary fittings
9) To study and demonstrate the joining/threading of GI Pipes, CI Pipes, SWG pipes, PVC pipes and copper pipes.
10) To demonstrate the laying of SWG pipes for sewers
11) Study of water purifying process by visiting a field lab.
12) Demonstration of plumbing tools.

INSTRUCTIONAL STRATEGY

Before imparting the instructions in the class room, visits to water works and sewage treatment plants can go a long way for increased motivation of students for learning in the class room. As the subject is of practical nature, lecture work be supplemented by field visits from time to time. Home assignments related to collection of information, pamphlets and catalogues from hardware shop dealing water supply and sanitary fittings will be very helpful for the students.

RECOMMENDED BOOKS

1. Duggal, KN; “Elements of Public Health Engineering”; S. Chand and Co. New Delhi
4. Kshirsagar, SR; “Sewage and Sewage Tratement”; Roorkee, Roorkee Publishing House

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>
4.3 IRRIGATION ENGINEERING

RATIONALE

Diploma holders in civil engineering have to supervise the construction, repair and maintenance of canals, head works, river training works, cross drainage works, regulatory and other works. Some of diploma holders are also engaged for preventing water logging and irrigation by tubewells. This subject imparts knowledge regarding hydrology, flow irrigation – storage and distribution system, constructional features of head works, river training works, cross drainage works, causes and prevention of water logging and construction of tube wells.

LEARNING OUTCOME

After undergoing the subject, students will be able to:

- Explain concept of necessity of irrigation in India
- Recognise different crops and their water requirements
- Define rainfall and runoff
- Measure rainfall and read rain gauges and hydrographs
- Monitor construction and maintenance work of canal and canal linings
- Monitor installation of tubewells and water harvesting techniques
- Supervise maintenance and construction work of canal head works and cross regulators
- Supervise construction of various river training works
- Carry out desilting operation of canals

DETAILED CONTENTS

THEORY

1. Introduction: (2 hrs)
 1.1 Definition of irrigation
 1.2 Necessity of irrigation
 1.3 History of development of irrigation in India
 1.4 Major, medium and minor irrigation projects
2. Water Requirement of Crops (6 hrs)

2.1 Principal crops in India and their water requirements

2.2 Crop seasons – Kharif and Rabi

2.3 Soil water, soil crop and crop water relationships, Duty, Delta and Base Period, their relationship

2.4 Gross commanded area (GCA), culturable commanded area (CCA), Intensity of Irrigation, Irrigable area

3. Hydrological Cycle Catchment Area and Run-off (6 hrs)

Rainfall, definition rain-gauges – automatic and non-automatic, methods of estimating average rainfall (Arithmetic system); catchment area runoff, factors affecting runoff, hydrograph, basic concept of unit hydrograph.

4. Methods of Irrigation (7 hrs)

4.1 Flow irrigation - its advantages and limitations

4.2 Lift Irrigation – Tubewell, submersible and well irrigation advantages and disadvantages

4.3 Sprinkler irrigation conditions favourable and essential requirements for sprinkler irrigation, sprinkler system – classification and component parts

4.4 Drip irrigation, suitability of drip irrigation, layout, component parts, advantages

5. Canals (8 hrs)

5.1 Classification, apurtenances of a canal and their functions, sketches of different canal cross-sections

5.2 Various types of canal lining - their related advantages and disadvantages, sketches of different lined canal x-sections

5.3 Breaches and their control

5.4 Maintenance of lined and unlined canals
6. Tube Well Irrigation (9 hrs)

6.1 Introduction, occurrence of ground water, location and command, advantages and disadvantages, comparison with canal irrigation

6.2 Tube wells, explanation of terms: water table, radius of influence, depression head, cone of depression, confined and unconfined aquifers. Yield of a well and methods of determining yield of well

6.3 Types of tube wells and their choice-cavity, strainer and slotted type;

6.4 Method of boring, installation of well assembly, development of well, pump selection and installation and maintenance

6.5 Water Harvesting Techniques: Need and requirement of various methods, Run-off from roof top and ground surface, construction of recharge pits and recharge wells and their maintenance.

7. Dams (7 hrs)

7.1 Classification of dams; earth dams - types, causes of failure; cross-section of zoned earth dam, method of construction, gravity dams – types, cross-sections of a dam, method of construction

7.2 Concept of small and micro dams

7.3 Concept of spillways and energy dissipators

8. Canal Head Works and Regulatory Works (6 hrs)

Definition, object, general layout, functions of different parts of head works. Difference between weir and barrage

9. Cross Drainage Works (4 hrs)

9.1 Functions and necessity of the following types: aqueduct, super passage, level crossing, inlet and outlet

9.2 Sketches of the above cross drainage works

10. Definitions of following Hydraulic Structures with Sketches (2 hrs)

10.1 Falls

10.2 Cross and head regulators
10.3 Outlets

10.4 Canal Escapes

11. River Training Works (4 hrs)

Methods of river training, guide banks, retired (levees) embankments, groynes and spurs, pitched island, cut-off

12. Water Logging and Drainage and Ground Water Re-charge (3 hrs)

12.1 Definition of water logging – its causes and effects, detection, prevention and remedies

12.2 Surface and sub-surface drains and their layout

12.3 Concept and various techniques used for ground water re-charge

INSTRUCTIONAL STRATEGY

The teaching of the subject should be supplemented by field visits at regular intervals of time to expose the students to irrigation works. Students should be asked to prepare and interpret drawings of various irrigation works.

RECOMMENDED BOOKS

2. Garg, Santosh Kumar, ‘Irrigation Engineering and Hydraulics Structures’, Khanna Publishers, Delhi,

3. Punmia, BC; and Pande Brij Bansi Lal, ‘Irrigation and Water Power Engineering’, Delhi, Standard Publishers Distributors, Delhi,

5. Sharma, SK; ‘Principles and Practice of Irrigation Engineering’, Prentice Hall of India Pvt. Ltd., New Delhi,

7. Saharsabudhe SR, “Irrigation Engineering and Hydraulic Structures”
9. BIS Codes

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>
4.4 SURVEYING – II

RATIONALE

The important functions of a civil engineer includes the jobs of detailed surveying, plotting of survey data, preparation of survey maps and setting out works. While framing the curriculum for the subject of surveying, stress has been given to the development of knowledge and skill in theodolite surveying, tachometry surveying, curves and use of minor and modern instruments have been included in this subject.

Field work should be a selected one so that student can check his work and have an idea of the results the extent of error in the work done by him. As far as possible, the surveys done should be got plotted, as this will also reveal errors in the work and develop skill in plotting.

LEARNING OUTCOME

After undergoing the subject, students will be able to:

- Interpolate contours on a given sheet of paper
- Align a proposed road
- Draw a contour plan of an area
- Calculate earth work for a road from a contour map
- Prolong a line with theodolite
- Conduct closed traversing
- Measure horizontal and vertical angles
- Set out simple circular curve
- Read Total Station, EDM and Auto level

DETAILED CONTENTS

1. Contouring: (08 hrs)

 Concept of contours, purpose of contouring, contour interval and horizontal equivalent, factors effecting contour interval, characteristics of contours, methods of contouring: Direct and indirect, use of stadia measurements in contour survey, interpolation of contours; use of contour map, Drawing cross section from a contour map; marking alignment of a road, railway and a canal on a contour map, computation of earth work and reservoir capacity from a contour map

2. Theodolite Surveying: (12 hrs)

 Working of a transit vernier theodolite, axes of a theodolite and their relation; temporary adjustments of a transit theodolite; concept of transiting, swinging, face
left, face right and changing face; measurement of horizontal and vertical angles. Prolonging a line (forward and backward) measurement of bearing of a line; traversing by included angles and deflection angle method; traversing by stadia measurement, theodolite triangulation, plotting a traverse; concept of coordinate and solution of omitted measurements (one side affected), errors in theodolite survey and precautions taken to minimize them; limits of precision in theodolite traversing. Height of objects – accessible and non-accessible bases.

3. Tacho-metric surveying (07 hrs)

Tachometry, Instruments to be used in tachometry, methods of tachometry, stadia system of tachometry, general principles of stadia tachometry, examples of stadia tachometry and Numerical problems.

4. Curves: (15 hrs)

4.1 Simple Circular Curve:

* Need and definition of a simple circular curve; Elements of simple circular curve - Degree of the curve, radius of the curve, tangent length, point of intersection (Apex point), tangent point, length of curve, long chord deflection angle, Apex distance and Mid-ordinate. Setting out of simple circular curve:
 a) By linear measurements only:
 - Offsets from the tangent
 - Successive bisection of arcs
 - Offsets from the chord produced
 b) By tangential angles using a theodolite

4.2 Transition Curve:

Need (centrifugal force and super elevation) and definition of transition curve; requirements of transition curve; length of transition curve for roads; by cubic parabola; calculation of offsets for a transition curve; setting out of a transition curve by tangential offsets only

4.3 Vertical curve

Setting out of a vertical curve

5. Introduction to the use of Modern Surveying equipment and techniques such as: (06 hrs)

a) EDM or Distomat
b) Planimeter (Digital)
c) Total station
d) Introduction to remote sensing and GPS
e) Auto level
f) Digital theodolite

NOTE: No sketch of the instruments may be asked in the examination
PRACTICAL EXERCISES

I. Contouring:

i) Preparing a contour plan by radial line method by the use of a Tangent Clinometer/Tachometer

ii) Preparing a contour plan by method of squares

iii) Preparing a contour plan of a Road/Railway track/Canal by taking cross sections.

II. Theodolite:

i) Taking out the Theodilite, mounting on the tripod and placing it back in the box

ii) Study of a transit vernier theodolite; temporary adjustments of theodolite

iii) Reading the vernier and working out the least count, measurement of horizontal angles by repetition and reiteration methods

iv) Measurement of vertical angles and use of tachometric tables

v) Measurement of magnetic bearing of a line

vi) Running a closed traverse with a theodolite (at least five sides) and its plotting

vii) Height of objects with and without accessible bases

III. Curves

i) Setting out of a simple circular curve with given data by the following methods
 a) Offsets from the chords produced
 b) One theodolite method

IV. Minor instruments:

i) Demonstration and use of minor instruments like Ceylon Ghat Tracer, Tangent Clinometer, Pantagraph, Abney level etc.

ii) Use of planimeter for computing areas
V. Demonstration of digital instruments through field visits to Survey of India and other government agencies.

VI. To plot an area with the help of Total Station

INSTRUCTIONAL STRATEGY

This is highly practice-oriented course. While imparting theoretical instructions, teachers are expected to demonstrate the use of various instruments in surveying, stress should be laid on correct use of various instruments so as to avoid/minimize errors during surveying. It is further recommended that more emphasis should be laid in conducting practical work by individual students

RECOMMENDED BOOKS

1. Hussain, SK and Nagraj, MS "Text Book of Surveying";, S Chand and Co Ltd., New Delhi
2. Deshpande, RS "A Text Book Surveying and Levelling"; United Book Corporation, Pune,
3. Kocher, CL; "A Text Book of Surveying"; Katson Publishing House Ludhiana,
5. Kanetkar, TP; and Kulkarni, SV; "Surveying and Leveling-Vol.2" AVG Prakashan, Pune
6. Punima, BC; "Surveying and Leveling "., Standard Publishers Distributors, Delhi
8. Lilly Sant “Remote Sensing and Image Interpretation”

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>07</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>06</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>
4.5 STRUCTURAL MECHANICS

RATIONALE

This is a basic engineering subject. The purpose of the subject is to impart basic knowledge and skill regarding properties of materials, concept of stresses and strains, bending moment and shear force diagrams, second moment of area, bending and shear stresses, slope and deflection and analysis of trusses. The above knowledge will be useful for designing simple structural components. This subject is very important to develop basic concepts and principles related to strength of materials. This subject will also enable the students to continue their further education.

LEARNING OUTCOME

After undergoing the subject, students will be able to:

- Conduct different tests on mild steel
- Calculate modulus of elasticity
- Analyse and explain stress-strain diagram of mild and HYSD steel
- Calculate various forces used in design of structures
- Calculate shear force, bending moment for simply supported, cantilever and overhanging beams with concentrated and uniformly distributed loads
- Calculate moment of inertia, second moments of inertia, radius of gyration, section modulus for L, T, channel and I sections
- Calculate the bending stresses, moment of resistance of simply supported beams
- Explain shear stress, stress distribution diagram for rectangular, circular, I, T and L sections
- Calculate slope and deflection of determinate structures
- Verify forces in a framed structure

DETAILED CONTENTS

THEORY:

1. Properties of Materials (04 hrs)
 1.1 Classification of materials, elastic materials, plastic materials, ductile materials, brittle materials.
 1.2 Introduction to tensile test, compressive test, impact test, fatigue test, torsion test on metals.
2. Simple Stresses and Strains:

- Concept of stress, normal and shear stresses,
- Concept of strain and deformation, longitudinal and transverse strain, poisson's ratio, volumetric strain
- Hooke's law, modulii of elasticity and rigidity, Bulk modulus of elasticity, relationship between the elastic constants.
- Stresses and strains in bars subjected to tension and compression. Extension of uniform bar under its own weight, stress produced in compound bars (two or three) due to axial load.
- Stress-strain diagram for mild steel and HYSD steel, mechanical properties, factor of safety.
- Temperature stresses and strains

3. Shear Force and Bending Moment:

- Concept of a beam and supports (Hinges, Roller and Fixed), types of beams: simply supported, cantilever, propped, over hang, cantilever and continuous beams (only concept).
- Types of loads (dead load, live load, snow load, wind load seismic load as per IS Codes etc) and types of loading (point, uniformly distributed and uniformly varying loads)
- Concept of bending moment and shear force, sign conventions
- Bending Moment and shear force diagrams for cantilever, simply supported and overhanging beams subjected to concentrated, uniformly distributed
- Relationship between load, shear force and bending moment, point of maximum bending moment, and point of contraflexure.

4. Moment of Inertia:

Concept of moment of inertia and second moment of area and radius of gyration, theorems of parallel and perpendicular axis, second moment of area of common geometrical sections: rectangle, triangle, circle (without derivations). Second moment of area for L, T and I sections, section modulus.
5. Bending Stresses in Beams: (06 hrs)

5.1 Concept of pure/simple bending

5.2 Assumptions made in the theory of simple bending, derivation and application of bending equation to circular cross-section, I section, T&L sections only

Moment of resistance

Calculations of bending stresses in simply supported beam

6. Shear Stresses in Beams (04 hrs)

6.1 Concept of shear stresses in beams, shear stress distribution in rectangular, circular I, T, L sections for S.S. beams and Portland

7. Slope and Deflection: (04 hrs)

Determination of slope and deflection using Moment Area Theorem for simply supported beam for pointed load and U.D.L. (no derivation, numerical problems)

8. Columns: (04 hrs)

8.1 Theory of columns
8.2 Problem solving using Eulers and Rankine Formula

9. Analysis of Trusses: (06 hrs)

9.1 Concept of a perfect, redundant and deficient frames
9.2 Assumptions and analysis of trusses by:
 a) Method of joints
 b) Method of sections

PRACTICAL EXERCISES

i) Determination of yield stress, ultimate stress, percentage elongation and plot the stress strain diagram and compute the value of young's modulus on mild steel

ii) Testing of HYSD Steel

iii) Determination of Young's modulus of elasticity for steel wire with searl's apparatus

iv) Determination of modulus of rupture of a concrete beam
v) Determination of maximum deflection and young's modulus of elasticity in simply supported beam with load at middle third point

vi) Verification of forces in a framed structure

INSTRUCTIONAL STRATEGY

Teachers are expected to give simple exercises involving the applications of various concepts and principles being taught in the subject. Efforts should be made to prepare tutorial sheets on various topics and students should be encouraged/guided to solve tutorial sheets independently. In the practical works, individual students should be given opportunities to do practical work, make observations and draw conclusions. Teachers should also conduct viva examination in which stress should be given on the understanding of basic concepts and principles.

RECOMMENDED BOOKS

iv) Prasad VS “ Structural mechanics Galgotia publications Pvt Ltd., Delhi

vi) Singh Birinder “Structural Mechanics” Kaption Publishers, Ludhiana

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04</td>
<td>06</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>06</td>
</tr>
<tr>
<td>5</td>
<td>06</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>04</td>
<td>06</td>
</tr>
<tr>
<td>7</td>
<td>04</td>
<td>07</td>
</tr>
<tr>
<td>8</td>
<td>04</td>
<td>07</td>
</tr>
<tr>
<td>9</td>
<td>06</td>
<td>07</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>
4.6 PUBLIC HEALTH AND IRRIGATION ENGINEERING DRAWING

L T P
- - 4

RATIONALE

Diploma holders in Civil Engineering are expected to supervise construction of water supply and wastewater treatment works and irrigation structures. This subject aims at imparting skills for preparing water supply and waste water and irrigation engineering drawings to develop competencies for reading the drawings, and their execution in their field.

LEARNING OUTCOME

After undergoing the subject, students will be able to:

- Draw the drawings of traps, manholes and inspection chambers
- Draw the drawing of water supply plan of building
- Draw the sewerage plan of buildings
- Draw the drawing of channel (L-section and cross-section)
- Draw and demonstrate cross-section of an earthen dams
- Draw layout plan of a canal head works
- Read and interpret the Public Health and Irrigation Engineering Drawings

DETAILED CONTENTS

Drawings Exercises

PART A :

WATER SUPPLY AND WASTE WATER ENGINEERING DRAWING

1. Drains and Sewers
 1.1 Cross section of standard types of open drains (circular, V-shaped and U-shaped) with their foundations
 1.2 Cross section of earthen ware and RCC sewer pipes
 1.3 Cross sections of masonry sewers (circular and egg shaped)

2. Traps, manholes and inspection chamber
 2.1 Detailed section of floor trap and gully trap
 2.2 Detailed plan and section of an inspection chamber
 2.3 Detailed plan and section of a manhole
3. **Septic Tank and Soak Pit**

 Detailed plan and cross sections of a domestic septic tank with soak pit for 5-10 users

4. **Bath room and W.C connections:**

 4.1 Cross-section through the external wall of lavatories at ground and first floor showing the one and two pipe system and the connections of the lavatory to inspection chamber

 4.2. Plan of a bathroom showing positions of lavatory, bath tub, wash-basin, taps and showers

5. **Draw sectional elevation of a two storeyd building showing details of one pipe and two pipes systems with sanitation system.**

6. **Practice of reading water supply and sanitary engineering working drawings (PWD/urban Development agencies) including hot water and cold water supply system of a two room set.**

PART B

B) IRRIGATION ENGINEERING DRAWING:

1. **Typical cross-section of a channel**
 - L-section of a channel for given data
 - Typical cross section of an unlined and lined channel in cutting, partly cutting and partly filling and fully in filling with given design data.

3. **Layout plan of a canal head works**

4. **Draw the typical L-section of a weir**

4. **Draw the X-section of an Earthen Dam**
 i) Homogeneous
 ii) Zoned type
 iii) Diaphragm type

5. **Cross section of a tube well**

6. **Layout and cross section of rain water harvesting system.**
Important Note:
 i) Use of BIS: 456-2000 is permitted in the examination
 ii) Paper should be set from Part A ad Part B of equal marks

INSTRUCTIONAL STRATEGY

Teachers are expected to develop skills in preparation and interpretation of water supply and waste water engineering drawings as per BIS codes of practice. Attention must be paid towards line work, specifications writing, dimensioning, proportioning and accuracy for industrial unit at different intervals of time. Reading and interpreting actual field drawings should also be practiced so as to develop necessary competency in the students.

RECOMMENDED BOOKS

1. Layal JS “Civil Engineering Drawing”, Satya Parkashan, New Delhi
2. Chandel RP “Civil Engineering Drawings”
3. Kumar; NS “Civil Engineering Drawing” IPH, New Delhi
4.7 GENERIC SKILLS AND ENTREPRENEURSHIP DEVELOPMENT

RATIONALE

Generic Skills and Entrepreneurship Development is one of the courses from “Human Science” subject area. Generic skills have emerged as an important component of employability skills, which enable an individual to become and remain employable over lifetime and to lead happy and prosperous life. Entrepreneurship development aims at developing conceptual understanding for setting-up one’s own business venture/enterprise. This aspect of Human Resource Development has become equally important in the era, when wage employment prospects have become meager. Both the subject areas are supplementary to each other and soft skills are required to be developed in diploma pass-outs for enhancing their employability and self confidence.

LEARNING OUTCOME

After undergoing the subject, the student will be able to:

- Explain the importance of generic skills
- Demonstrate self development
- Manage himself/herself physically, intellectually and psychologically
- Work effectively as a team member
- Manage tasks effectively
- Apply knowledge to solve problems
- Develop an entrepreneurial mindset.
- Identify entrepreneurial support system for new ventures and small businesses.
- Recognize a business opportunity.
- Prepare project report
- Demonstrate how to launch an individual's entrepreneurial career

DETAILED CONTENTS

1. Introduction to Generic Skills (04 hrs)
 1.1 Importance of Generic Skill Development
 1.2 Global and Local Scenario of Generic Skill Development
 1.3 Life Long Learning and associated importance of Generic Skill Development
2. Managing Self (08 hrs)

2.1 Knowing Self for Self Development
- Self-concept, personality, traits, multiple intelligence such as language intelligence, numerical intelligence, psychological intelligence etc.

2.2 Managing Self - Physical
- Personal grooming, Health, Hygiene, Time Management

2.3 Managing Self – Intellectual development
- Information Search: Sources of information
- Writing Skills – Official & business correspondence, Job application covering letter and resume
- Speaking Skills – Mock interview, Preparing for meeting, Group discussion

2.4 Managing Self – Psychological
- Stress, Emotions, Anxiety-concepts and significance
- Techniques to manage stress

3. Managing in Team (06 hrs)

3.1 Team - definition, team dynamics

3.2 Team related skills- sympathy, empathy, co-operation, concern, lead and negotiate, work well with people from culturally diverse background

4. Task Management (03 hrs)

4.1 Task Initiation, planning, execution, close out
4.2 Exercises/case studies on task planning towards development of skills for task management

5. Problem Solving (05 hrs)

5.1 Prerequisites of problem solving- meaningful learning, ability to apply knowledge in problem solving
5.2 Different approaches for problem solving.
5.3 Steps followed in problem solving.
5.4 Exercises/case studies on problem solving.

6. Entrepreneurship (22 hrs)

6.1 Introduction
- Concept/meaning and its need
- Qualities of an entrepreneur
- Entrepreneurial Support System e.g., District Industry Centres (DICs), Commercial Banks, State Financial Corporations, Small Industries Service Institute (SISIs), Small Industries Development Bank of India (SIDBI), National Bank of Agriculture and Rural Development (NABARD), National Small Industries Corporation (NSIC) and other relevant institutions/organizations at State/National level.
6.2 Market Survey and Opportunity Identification (Business Planning)
- How to start a small scale industry
- Procedures for registration of small-scale industry
- Assessment of demand and supply in potential areas of growth.
- Understanding business opportunity
- Considerations in product selection

6.3 Project Report Preparation
- Preliminary Project Report
- Techno-Economic Feasibility Report
- Preparation of Detailed Project Report

INSTRUCTIONAL STRATEGY

This subject will require a blend of different teaching and learning methods beginning with lecture method. Some of the topics may be taught using question answer, assignment, case studies or seminar. In addition, expert lectures may be arranged from within the institution or from management organizations. Conceptual understanding of Entrepreneurship, inputs by teachers and outside experts will expose the students so as to facilitate in starting ones own business venture/enterprise. The teacher will discuss success stories and case studies with students, which in turn, will develop managerial qualities in the students. There may be guest lectures by successful diploma holding entrepreneurs and field visits also. The students may also be provided relevant text material and handouts.

RECOMMENDED BOOKS

1. Soft Skills for Interpersonal Communication by S. Balasubramanian Published by Orient Black Swan, New Delhi.
3. Lifelong Learning, Policy Brief (www.oecd.org)
4. A Handbook of Entrepreneurship, Edited by BS Rathore and Dr JS Saini; Aapga Publications, Panchkula (Haryana)
5. Entrepreneurship Development by CB Gupta and P Srinivasan, Sultan Chand and Sons, New Delhi
6. Handbook of Small Scale Industry by PM Bhandari

SUGGESTED DISTRIBUTION OF MARKS

<table>
<thead>
<tr>
<th>Topic No.</th>
<th>Time Allotted (Hrs)</th>
<th>Marks Allotted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>2.</td>
<td>08</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>06</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>03</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>05</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>
ENTREPRENEURIAL AWARENESS CAMP

The employment opportunities for diploma holders especially in public sector are dwindling. The diploma holders need to explore the possibilities of becoming entrepreneurs. For this, they must be acquainted with entrepreneurship development, scope of setting up small-scale industry, existing business opportunities, financial support available and various aspects of managing business. In this context, an entrepreneurial awareness camp is suggested. During the camp, experts from various organizations such as banks, financial corporations, service institutes etc. may be invited to deliver expert lectures. Successful entrepreneurs may also be invited to interact with the students. Students may be encouraged to read papers or give seminar during the camp on Entrepreneurship Development related topics.

The camp is to be organized at a stretch for two to three days during fourth semester. Lectures will be delivered on the following broad topics. There will be no examination for this subject

1. Who is an entrepreneur?
2. Need for entrepreneurship, entrepreneurial career and self employment
3. Scenario of development of small scale industries in India
4. Entrepreneurial history in India, Indian values and entrepreneurship
5. Assistance from District Industries Centres, Commercial Banks, State Financial Corporations, Small industries Service Institutes, Research and Development Laboratories and other Financial and Development Corporations
6. Considerations for product selection
7. Opportunities for business, service and industrial ventures
8. Learning from Indian experiences in entrepreneurship (Interaction with successful entrepreneurs)
9. Legal aspects of small business
10. Managerial aspects of small business